A study on protein content and protein profiles of *Phytophthora* parasitica isolates in relation to their serological groupings

B. MOHANTY¹, B. DASGUPTA² AND S. C. POI³

^{1 & 2} Department of Plant pathology, B.C.K.V., Mohanpur 741 252, Nadia, W.B.,

Received: 07.02.2009 Accepted: 23.11.2010 Published: 25.04.2011

Six isolates of *Phytophthora parasitica* were tested for their protein content and protein profile. The virulent isolates showed maximum protein content in comparison to that showed by the avirulent ones. The virulent isolates also showed extra band of protein which may be considered to be contributing to their virulence. Among the tested ones, 14 isolates were in three serogroups and five isolates did not react with any of these three antisera. The total protein content and protein profile could not be found to be related with antigenic properities of the isolates. The virulent isolates P_5 , P_3 and P_{21} belonged to different serogroups and also differed in addition to their protein content and protein profile.

Key words: Phytophthora parasitica isolates, protein profile

INTRODUCTION

The presence of cross-reactive antigens are present in several species of pathogens. These cross reactive antigens are also called 'common antigens', when they are present in some of the pathogenic isolates. The antigens mostly being protein in nature, there may be a relation in between total protein, protein profile and the antigen properties. The present study has been made to determine the possible presence of common antigens among isolates of *Phytophthora parasitica* and their significance in relation to total protein content and protein profiles of the isolates.

MATERIALS AND METHODS

Fourteen number of isolates of *Phytophthora* parasitica were taken from the Pathology Department, B.CK.V., Mohanpur, Nadia, India for this experiment.

The protein content of the isolates was measured according to Lowry *et al.* (1951) and their protein profile were done according to Laemmli, (1970). The serogrouping of the isolates against available antisera of only P_3 , P_{13} , P_5 and P_{11} isolates were

made by the method mentioned by Charudattan and Devay (1972).

RESULTS

The results (Table 1) showed that maximum protein content was in the isolate P_2 (88.46 mg) and minimum in isolate P_{13} (57.67 mg). It was found that P_5 (83.69 mg) had the second highest amount of protein followed by P_1 (71.24 mg), P_6 (70.78 mg) and P_8 (70.17 mg). So, if the isolates were arranged in increasing order of their protein content it will be as : $P_{13} < P_8 < P_6 < P_1 < P_5 < P_{21}$, Regarding protein

Table 1 : Proteins content and protein profile of different isolates of *P. parasitica*

Isolates	Protein (mg/g of mycelium)	Protein profile No. of band	
P ₁	71.24	3	
P ₅	83.69	3	
P ₆	70.78	2	
P ₈	70.17	2	
P ₁₃	57.67	2	
P ₂₁	88.46	3	

P₂₁ = Highly virulent strain

³Nodule Research Laboratory, Research Building No. 2, Mohanpur 741 252, Nadia, W.B.,

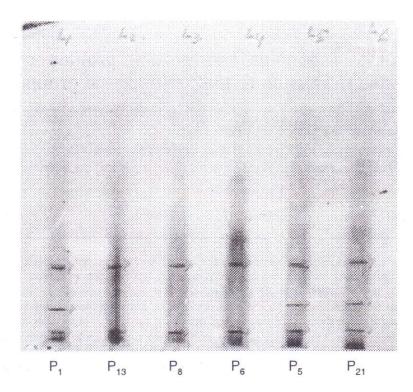


Fig. 1: Protein profile of six isolates of Phytophthora parasitica

profiles of isolates of P. parasitica it was found (Fig.1) that in all the lanes (L_1 to L_6), the upper and lower bands were common. A middle protein band was found in lane 1 (P_1), 5 (P_5) and 6 (P_{21}) and not in lane 2 (P_{13}), 3 (P_8) and 4, (P_6) indicating that P_1 , P_5 and P_{21} have similar type of protein profile while P_{13} , P_8 and P_6 had a different one.

It was found from Table 2 that P_3 antiserum reacted with antigens of P_3 , P_{21} and P_{22} . The antisera of both P_{13} and P_{11} reacted with antigens of P_{11} , P_{13} and P_{16} . The P_5 antiserum reacted with P_5 and P_{10} . So, these isolates were grouped into 3 serogroups, e.g., P_3 (P_3 , P_9 , P_{21} and P_{22}), P_{13} (P_{11} , P_{13} and P_{16}) and P_5 (P_5 and P_{10}). The strains P_2 , P_8 , P_{15} , P_{23} and P_{24} did not react with none of these antisera. They may be in different groups in same group.

DISCUSSION

When protein content of six isolates was analysed, it was found that highest amount of protein was in the highly virulent isolate P_{21} and lowest amount was in the less virulent isolate P_{13} of P. parasitica (Table 1). Isolates containing higher protein content thus were more virulent than those having lesser amount of protein. Protein profile of the isolates were studied by determining the band pattern of the protein

(Kennedy and Dunkan, 1995). It was found that the isolates P_1 , P_5 and P_{21} had an extra band of protein in contrast to the isolates P_6 , P_8 and P_{13} and former

Table 2: Presence of common antigens among different isolates of *P. parasitica* on agar gel double diffusion test

Antigen		Antisera				
	P ₃	P ₁₃	P ₅	P ₁₁		
P ₂	=					
P ₂	·	=	-	-		
P ₃	+	-	-	-		
P ₅	-	= "	+	-		
P ₆	_	=	_	-		
P ₈	-			-		
P_9	+	-	-	_		
P ₁₀		_	+	-		
P ₁₁	=	+	-	+		
P ₁₃	-	+	-	+		
P ₁₅	_	_	_	_		
P ₁₆	_	+	_	+		
P ₂₁	+	-	-	-		
P ₂₂	+	-	_	_		
P ₂₃	_	-	-	:		
P ₂₄	_	_	_	_		

^{+ =} common precipitation band(s) detected

^{- =} common precipitation bands(s) not detected

groups of isolates were more virulent than the later one. The presence of that extra band of protein might be responsible for their high protein content and thereby also for their virulence.

For better inter species identification serological tests were done (Merz *et al.*, 1969) excepting P_1 (the antiserum could not be executed). It was found that all the test isolates were not in same serogroup, but they were mainly in three serogroups i.e P_3 (P_3 , P_9 , P_{21} and P_{22}), P_{13} (P_{11} , P_{13} and P_{16}) and P_5 (P_5 and P_{10}). This was also revealed from the experiment that highly virulent isolates P_5 and P_{21} , as characterized by their higher protein contents and extra band in their protein profiles, were not belonging to a single serogroup. The antigenic properties of those isolates of P. parasitica had no

bearing with their protein characters attributing to their virulence.

REFERENCES

- Charudattan, R and Devay, J.E. 1972. Common antigens among varieties of *Gossypium hirsutum* and isolates of *Fusarium* and *Verticillium* species. *Phytopathology*, **62**(2): 230-234.
- Kennedy, D.M. and Duncan, J.M. 1995. A pappillato *Phytophthora* species specificity to Rubus. *Mycol. Res.*, **99**(1): 57-68.
- Laemmli, V.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T₄. *Nature*, **227**: 680-685
- Lowry, O.H., Rosebrough, N.J.; Farr, A.L. and Randal, R.J. 1951.

 Protein measurement with folinphenol reagent. *J. Biol. Chem.*, **193**: 265.
- Merz, W.G.; Burrell, R.G. and Gallegly, M.E. 1969. A serological comparison of six heterothallic species of *Phytophthora*. *Phytopathol*, 59: 367-370.